Iterator Design Pattern [Gamma et al]

Traditionally aggregate objects are identical group of type like objects. As the iterator abstraction is
fundamental to an emerging methodology known as “Generic programming” which advocates the
notion to separate the algorithms from data structures. The intent is to motivate component based
development and reduce configuration management. Therefore this pattern provides a way to access
and pass through collection without exposing its internal architecture. This pattern provides a
mechanism to traverse the complex structures as well regardless of the matter how the internal
representation. Iterator is commonly used in frameworks and libraries. It falls into the three categories
as shown in the figure.

E Structure Mested
xternal o Shar -~ Ob:
Iterator —_ = Sharing - Ject
— Iterator Iterator
ff =__ External
/ . Magic
;’f Coolae
#f Iterator
g
/ - .
/o Single ) Multiple _ Magic
Iterator © = Integral = Integral = -
Y Cookie
x“\ Cursor Cursors
Y
AY
N,
Y
Internal
Iterator

Figure 1.7 Iterator Categories

Following are the variants of Iterator design pattern:

External Iterators [60]

The aggregate object provides a simple interface for adding, removing, retrieving elements from the
complex structure. Sequential access to the elements of the aggregate object is provided by external
iterator. This variant is commonly used in applications because of easy to implement nature. To iterate
over a collection using an external iterator, a client must create the iterator and then loop, processing
elements until no more are forthcoming.



Listlterator

List

List Index
T - S
* add Mext{)
Append() First{)
Removel() IsDonel()

Currentitem()

List list = new LinkedList();
for(Iterator i = list.iterator(); i.haslNext():)
{System.out.println(i.next());};

Figure 1.8 UML and source code of External Iterator

Static Structure Iterators [60]

This variant overcomes the performance penalty of the external iterator discussed above. A structure
sharing iterator provides exactly the same interface to clients as a completely external iterator.
Although it must be constructed slightly differently, but to iterate over a collection. Given below is the
highlighted implementation:

class SharinglistIterator implements Iterator {
Link ilink;

SharingListIterator(LinkedList list) {
this.ilink = list.link;}

public boolean haslext() {return ilink != null;};
public Object next() {

Object rv = ilink.value;

ilink = ilink.next; return rv;};

Figure 1.9 source code of Static structure iterator

Nested Object Iterator [60]

This variant is implemented by making the iterator an instance of an inner class declared inside the
aggregate's class. This will avoid aggregate object's representation from outside. Below is the
implementation aspect of nested object iterator:



class NestedLinkedList implements List {
Link link:
Iterator iterator() {return new NestedListIterator();

// other methods deleted

class NestedListIterator implements Iterator {
Link ilink;

NestedListIterator() {this.ilink = link;}

public boolean hasNext() {return ilink != null;};
public Object next() {
Ubject rv = ilink.value; 1link = ilink.next;

return rv:J);

Figure 1.10 Null Object Iterator

Note: The difference between the two is in the way they deal with the aggregate's encapsulation | a
structure sharing iterator requires that the aggregate hand out a reference to its internal state to an
external object, while a nested object iterator is an internal object that explicitly offers extra public
services to the aggregate object's clients.

Single Integral Iterator [60]

In this variant, the iterator behavior is implemented into main aggregate class. A single integral cursor
allows a single client to iterate over an aggregate, and, because the cursor is completely contained
within the aggregate, the iteration can be implemented efficiently without breaching encapsulation. The
main disadvantage is it supports only one traversal at a time. Below is the highlighted change:

interface SingleCursorList {

Object get(int index);

Object set(int index, Object element) ;
// many other List methods deleted

void start () ;
boolean  hasNext();
Object next () ;

}

Figure 1.11 Single Integral Iterator



Multiple Integral Iterator [60]

The single cursor design can be extended to support multiple simultaneous iterations by storing more
than one cursor inside the aggregate. Other than supporting multiple simultaneous traversals, a multiple
integral cursor iterator has similar advantages and disadvantages to a single integral cursor iterator in
particular, it does not breach the aggregate's encapsulation. Below is the implementation aspect:

interface MultipleCursorList {
// List methods deleted

int openCursor () ; // allocates cursor
boclean  hasNext(int cursor);

Object next (int cursor);

void closeCursor(int cursor); // releases cursor
}

Figure 1.12 Multiple Integral Iterator

Magic Cookie [60]

A multiple cursor iterator must store some internal state for each active cursor, and also maintains a
client visible key that is used to access each cursor's state. These two objects can be unified by turning
the internal cursor into a magic cookie [61]. In many senses, a magic cookie design is simply another
version of a multiple integral cursor design which is efficient, supports multiple traversals, is easily made
robust and safe for concurrency, but does not support the standard external iterator interface. Below is

the implementation:

class MagicCookielist extends LinkedList {
// List methods deleted

Coockie cookie() {return new Cookie();};
boolean hasNext(Cookie cookie) {

return cookie.ilink != null;};
Object next (Cookie cookie) {

Ubject rv = cookile.ilink.value;
cookie.ilink = cookie.ilink.next; return rv; };

class Cookie {
private Link ilink;
Cookie () {ilink = 1link;};

Figure 1.13 Magic Cookie variant



External Magic Cookie Iterator [60]

This variant is an attempt to remove the drawback of the magic cookie iterator shown above to
implement the iterator interface. Traditional magic cookie iterator doesn’t support interface of basic
external iterator. The implementation is highlighted as follows:

class Cookielterator extends Cookie implements Iterator {
public boolean hasNext() {
return MagicCookieList.this.hasNext(this);};

public Object next() {
return MagicCookieList.this.next(this);};

Figure 1.14 External Magic Iterator

Internal Iterator [60]

This variant manages the flow and control during iteration. The client provides a specific operation to
execute an element, and the iterator applies that operation to each element in the aggregate object. An
internal iterator is not a refined object, the client manages the control flow and explicitly manages
individual elements. Internal iterators are thread safe in nature. Below is the source code
demonstration:

class LinkedListInternal extends LinkedList {
public void run(Block b) {
Link 1 = link;
while (1 '= null) {b.value(l.value); 1 = 1l.next; };

Client Request

LinkedListInternal list = new LinkedListInternal();
list.run(new Block() {
public void value(Object o) {
System.out.println(o);};});

Figure 1.15 Internal Iterator

Super Iterator [62]

The Super lterator pattern, like the standard Iterator pattern, traverses an unknown data structure
without exposing that structure. With the standard Iterator pattern, clients must create a different
iterator for each new structure, and the object returned must be of the specific type stored in the
structure, even when they share a common super class. With the Super Iterator pattern, the object


User
Highlight


returned is of the common super class, and the iterator itself need not be altered when adding a new
subtype with custom data structures. The client, however, must change two lines of code to load and
instantiate the new subclass. Below is the UML Diagram:

Client \

Referenr:ﬁ}' lterator

y ?

Result
F(x)]| | G(x)

Function

Created by Function
Deleted by lterator
Returned to Client

Figure 1.16 UML Diagram of Super lterator





