
9 Decorator Pattern [Gamma et al]

Functionalities evolve from day to day based on the additional requirement on a current proposed

structure. As a common rule of thumb new functionality is added either using inheritance or

composition. Inheritance inserts hierarchy problems into the structure. Root Class level

modifications introduce an obvious impact on all the implementors. Decorator design pattern is a

solution to such problems where dynamic responsibility is handled by the decorators. Think of

decorator as a skin that add some look and feel (behavioral) to an existing object advocating

delegation instead of separate inheritance. The intent of decorator pattern covers the runtime

functionality assigned at the scope of the object not class. [26], [34] and [35] describes an

application example of decorator pattern. Following are the variants of decorator pattern.

9.1 Added responsibility to run bottom up and top down [36]

In this variant decorator pattern is modified to add testing behaviors which is used in the testing

of classes. The goal was designed with state of mind that source remains unchanged and no

recompilation for the overall system is to be made explicitly. New behaviors (tests) are added by

the Concrete Decorators along with previous old cases which benefits the execution of tests

from top to bottom i.e. from Component class to ConcreteDecoratorB class. Conversely the

bottom up can be done by reversing the link of the Decorator field in the Decorator class .

+AMethod()

Component

+AMethod()
+AddedState()

ConcreteDecoratorA

+AMethod()
+AddedBehavior1()
+AddedBehavior2()

ConcreteDecoratorB

+AMethod()

Decorator

1

*

9.1 UML Diagram of bottom up and top down execution of behaviors approach [36]

User
Highlight

9.2 Decorators with factories [36]

In order to restrict the creation of objects directly from “new” operator and check on their dynamic

behavior, systems have different representations based on external conditions that drive the

creation of Decorator. The author [36] created a test case Client which it uses it to test the hierarchy

and then decouple it with no harm of source code change.

9.2 UML Diagram of decorator pattern implemented with abstract factory [36].

9.3 Mediate Decorator [37]

This variant describes a method where a third class that is not implemented by the Component

Class invokes the operation of the main Component Class. The component class now contains a

reference link of the third class called MediateDecorator which has a reference to the Decorator

class. The MediateDecorator is like second component and the Decorator Class implements the

first component and invokes the functionality of the second component via a composition link.

User
Highlight

User
Highlight

+Operation()

Component

+AMethod()
+AddedState()

ConcreteDecoratorA

+AMethod()
+AddedBehavior1()
+AddedBehavior2()

ConcreteDecoratorB

+AMethod()

Decorator

+AMethod()

ConcreteComponent

+Operation2()

MediateDecorator1

*

1

*

9.3 UML Diagram of Mediate Decorator pattern [37].

9.4 Delegation between abstraction and implementation [33]

This variant is described by delegation between ConcreteComponent Classes and abstraction

interface i.e. Style. The composition link carries the opportunity to invoke the abstraction operations

through Window. As an example, Windows styles vary from platform to platform which involves

client code to be executed independent of the platform

+showWindow()

Window

+drawWindow()
+manageApplication()
+showIcon()

XWindow

+showWindow()

WithIcon

+showWindow()

Empty

+drawWindow()
+manageApplication()
+showIcon()

Style

1 *

+showWindow()

Applicative
+drawWindow()
+manageApplication()
+showIcon()

XWindow

9.4 UML Diagram of delegation between abstraction and implementation [33].

9.5 Omitting the abstract Decorator class [1]

For sole responsibility, Decorator class can be eliminated if an existing structure already exists

rather than creating from scratch. The Decorator responsibility is embedded into the

ConcreteDecorator Class level.

User
Highlight

+Operation()

Component

+doOperation()

ConcreteComponent

+doOperation()
+doAdditionalOperation()

ConcreteDecoratorExtendedFunctionality

1

1

9.5 UML Diagram with no abstract decorator class [1].

