Mediator Design Pattern [Gamma et al]

In order to reduce coupling between classes, a mechanism is needed to facilitate interaction between
objects irrespective of knowing each other’s identities involved in the implementation of mediator
pattern. Mediator puts key focus on the middle object (the mediator) which is the point of contact for
objects. This middleware provides an opportunity to hold to route communication between the source
and the target and vice versa. This pattern is often misperceived with observer pattern which are quite
identical in structure but possess different characteristics in terms of implementation. Though both
patterns facilitates communication and decoupling between objects but the difference lies in the fact
that objects are authorized to access the central hub(mediator participant) while the observer merely
listens to the changes in the sender. Following are the variants of mediator design pattern:

Flight System Mediator [63]

The mediator design pattern uses mediator as an information “broker” between components of a sub-
system which minimizes component interdependencies, improves the extendibility for the simulator and
makes the maintenance easier. The mediator design pattern provides object decoupling and minimizes
component’s interdependencies. This results in more simple designs and software which is more
maintainable and extensible. Following is the UML Diagram:

SimulationdMode|
Flight Simulator Subsystem -
& mode:Moded
& system_listlist=Subsystem™ &1 fight:Flight_Simuator* & timer-Timers
Bl update():woid &l getFlight(rint = getMode()int
’ Supdate()void = petMimer():int
Lr gl}‘ Winitiatizerin
ing 737 Flight_System ‘{F
Bading 7.0 L Asrodynamics
I — e —
Blupdate():wid
: Hupdate(;vwoid |
| | |
l =% 1 s I ”
=} =} |}
Flight Medialor: Model
Decouple the model from the flight

Figure 1.17 Flight System Mediator

Traffic Generator Mediator [63]

In this variant, the Mediator pattern is used to coordinate the traffic generator, sink server and
preservation components. Following is the UML Diagram:

User
Highlight

<inberfaces
Mlediator coimterfaces>
createCollegue() Colle gue
collegueChange() sethMediator()
e = setCollegue
% -
b - - i
M - [
% L i
e i "' l_-.-" 1
5 i Swrt - : ?
: - il "\ : :
TrafficGenerator | PR Nememsmnn e ————— PreservationStation |
~F . v [s
' TrallicT ype |l . P rodle() :
: | generate TrafMic() qu DiffServiMediator """".* upidate) :
! | ronteq) walecs o [yauiie 0 o record() :
getTraflicTypeD) ""-'-_1.-_..:5 store () : ! :
i . . P :
: retrieved P | SinkServer :
' % P 4
E Trmmmrmmsmessmsssnsseeeed i update() :
i .| record() :
.......................... : | | processRequest()

Figure 1.18 UML of Traffic generator mediator

Mediator: Isolating associations between the Meta Objects [64]

In this variant the mediator controls and coordinates interactions among a set of meta-objects. It acts as
an intermediary among the meta-objects in the meta-level. Each meta-object knows only Meta-space,
not any other meta-object, thereby reducing the number of interconnections. Following is the UML
Diagram:

Metadpace <<inferface>> :
components:Hashtable MetaObject : ﬂ.ﬂe‘taahjectlnmpi
controller:SysController 1 id:String id:5tring ‘

] metaspace:MetaSpace metaspace:MetaSpace

A

reify():MetaSpace
addimpl{impl:5tring):void
addimpllimpl:initializer):void
addimpl{impl:Acceptor)void
removelmpl{mobj:String,impl:String).void :
impl(mogj:String,impl:String):MetaObject e ‘:"I'_Ifgr;fre} o
findMetaObj{mobj String):boolean
findimpl{impl:String):;boolean
currentlmplOfimobj:String):MetaSpace ;
changelmpl{oldObj:String, newObj:String):void 2 <Elcf:$tf;} "l ThreadPerRequestAcceptor

FileLogger

Figure 1.19 UML Diagram of Mediator variant

User
Highlight

