
6 Adapter Pattern [Gamma et al]

Unlike adapters in the real world which provide a compatible interface between two separate

objects, adapters in design patterns brings the same idea on board. There are situations when a

certain change has a bigger impact on the existing code. A certain scenario may occur when there

are different classes exposing different interfaces but need a same type of input object. So in order

to work with both classes adapter classes came into existence that make two incompatible

interfaces make work. [18] Defines an example of adapter pattern in a real time application.

Adapters can be well known implemented as Class Adapters and Object Adapters. Class adapters

involve multiple inheritances which are obsolete in modern languages but a way of implementation

still exists in the form of multiple interface implementations. On the other hand object adapters

involve composition technique as implement [1]. Following are the variants of Adapter Pattern:

6.1 Pluggable Adapters [54]

Dynamic adaptation of Adapter Class to one or many existing classes is termed as pluggable

adapters. The term pluggable is related to run time loading of classes. Not every class can be

adapted. There is a qualification criteria involved. I.e. Adapters must recognize which Class it

should adapt to. The optimum way to know the Adaptee class and Target Class is to define

certain methods with appropriate parameter types as Adaptee features. These features can be

used to identify the classes which Adapter should adapt to. Reflection [4] provides a mechanism

to read .Net Assembly metadata and locate methods with those feature types.

client

Adapter

AdapteeTarget1

Target2

Adaptee

6.1 UML Diagram of Two Way Adapter

6.2 Two Way Adapters [54]

Two way adapters provide a transparency view to multiple Adaptee interfaces. They are used in

situations for example when there is implementation of a certain process that involves some

third party vendor, as the implemented gets older a requirement pops in which illustrates the

fact to embed the new vendor interface. In that case it is unrealistic to remove the old working

functionality, so implementation of an interface that acts as a bidirectional i.e. an old and new

interface at the same time.

client

+TakeOff()

-airborne
-height

AirCraft

+TakeOff()
+IncreaseRevs()
+Airborne()

-height

SeaBird

+TakeOff()

«interface»
IAirCraft

+Speed()
+IncreaseRevs()

-airborne
-height

SeaCraft

+IncreaseRevs()
+Speed()

«interface»
ISeaCraft

TakeOff

delegate

delegate

6.2 UML Diagram of Two Way Adapter

