
1. Singleton (Gamma et al)

Singleton is one of the simplest and easy to implement design pattern. The intent defined by [1] ensures

a class only has one instance, and provide a global point of access to it. As we come across designing the

framework for application there are situations where we enforce a constraint to have exactly one

instance of a certain class throughout the application lifetime. It fits in a senario where there is a single

resource shared among different clients or objects. By a global access point it is meant that a particu lar

instance of the class can be accessed anywhere in the application without worrying about its

instantation but that isn’t very easy to achieve due to diverse implementation scenarios. Addtionally

Singleton should be a self owner. The client application or where the object is used is not required to

perform additional steps in the creation, configuration or destruction of the object. Programmatically a

singleton can defined as a class with private constructor that prohibits its creation with the “new”

language operator. The instance will be accessed with static properties or methods to get the

preconfigured object. Though there are some techniques which can break singleton such as “Reflection”

in modern languages to access the private information from the .Net Assembly metadata [4] , [5] but

reflection is usually discouraged and alternate ways can be implemented to tighten the security through

appropriate exceptional handling. Other than that Singleton is mostly used in combination with other

design patterns e.g. Builder, Prototype, Factory method and Abstract Factory which makes its

recognition questionable and important at the same time for the design pattern detection tools to give

accurate results as discussed in D3 (D-Cubed) [6]. Thus we are documenting some of the important

variants of singelton shown below. Please note that these variants are not the only available and yet

they can be combined to form new variants

1.1. Eager Instantiation [6]

It refers to the technique in which instances of objects are created before any block of code

particularly asks for them [7]. It benefits runtime performance particularly in the case when shared

objects are preloaded into memory awating to be called. This singleton variant involves the creation

of instance in an initialization block which is precalled when a class is loaded. This variant is

beneficial in thread safe scenarios but though it derives a demerit when there are limited number of

resoucers e.g. database connections. Following is the UML diagram

1.1 UML Diagram and source code of Eager Instantiation

1.2. Lazy Instantiation (non – thread safe) [6] [8]

It is a memory conservation technique by which the program delays the wanted object creation until

they are explicitly required for use. This technique is of two types i.e lazy class loading and lazy

object loading. The first one refers to a class when first referenced with a ‘static’ method or with

‘new‘ operator where as the later one provides tight coupling and delays the instatantiation unti l it

is actually needed. Lazy instantiation is one of the most common and heavily used variant of

singleton pattern which provides an access method to look for any existing singleton object, and

create an object if not found. This variant is an extention of the previous variant i.e. eager

instantiation. Because of its simple implmentatio this variant derives some drawbacks in the multi

threaded enviornment when two threads concurrently access a critical region code block. Following

is the UML and source code.

 1.2 UML diagram and source code of non safe thread implementation

1.3. Lazy Instantiation (thread safe) [8]

A secod version of lazy instantiation specifically focuses on the thread safe implementation of

singleton. This implementation makes use of the idea of critical region in operating systems when

different threads simultaneously access a certain region which is bound to a shared resource that

can be accessed one at a time. Similarly using this implementation we lock the singleton instance

creation region. It ensures that during a certain time only one thread will be executing the block.

 1.3 UML Diagram and source code of thread safe implementation

1.4. Lazy Instantiation with double lock mechanism [8] [9]

Another best thread safe implementation of singleton considered a good approach to provide

indepth handling of instance creation. At the same time it is discouraged as well because it can

yeild performance issues due to mutual-exclusion lock on a certain object [10]. Double locking

mechanism is generally avoided to ‘lock’ types(classes) which can cause threading issues [10].

 1.4 UML Diagram and source code of double locking mechanism

1.5. Replacable Instance [6]

There are situations when a singleton instance is replaced at runtime. The best way to symbolize

this is changing of the look and feel (GUI) of the application as discussed by [6]. Such type of

execution time changes require the singleton object to be replaced with new configurations. The

instance is still the one but with different configuration. So a setter method is provided which will

take care of necessary replacement.

 1.5 Uml Diagram and source code of Replacable Instance

1.6. SubClassed Singleton [6] [11]

Singleton classes are usually considered non extensable due to the fact that they have private

constructor. So implementing it to be subclassed by another class involves some extra

management to handle the ensurity of sole instance. Some time it may be the case to extend

the default behaviour of the singleton class e.g platerform dependent configurations that are

usually diverse in nature [6]. In this implementation the private constructor is made protected

so that classes should be derived from it but there is an issue with the static self instance which

will be shared among all the derived classes so in order to make the sole instance work the

singleton registry manager holds the oppurtunity to keep the class instances and returned when

needed [12]. Subclassed singleton is also dissused by [11] in a different way.

1.6 UML Diagram and source code of the subclassed singleton

1.7. Delegated Construction [6]

This variant uses the delegation technique to create the sole instance of the singleton pattern.

Delegation is basically passing on the duty of certain task(method call) to another object to do it

on the owner’s behalf [13]. The program must ensure the correct instance to be assigned during

delegated calls. The usuage of delegation in singleton class or its access method occur when

singleton is implemented with other patterns e.g Factory pattern for paramterize construction

of singleton [6].

-Init()
-Singleton()
+getInstance() : Singleton
-createInstance() : Singleton

-_instance : Singleton

Singleton

1.7 UML Diagram and source code for delegated construction of singleton in other method.

1.8. Different Placeholder [6]

This variant discusses a nested class inside singeton class that holds the responsibility of the

instance creation. The nested class acts a place holder for the singleton. This method benefits

the developer to use language features to ensure a fully lazy initializaion in multi threaded

enviornment.

1.8 UML Diagram and source code of singleton in a nested class

1.9. Different Access Point [6]

This variant focuses on scenario where singleton instance is created by different classes and

singleton class is an access point(static method) to access that instance. This variant can be used

in abstract factory implementation where the products are created and holded for future reuse.

1.9 UML Diagram and source code of singleton created in different class

1.10. Limiton [6]

This variant extends the concept of a sole instance singleton to limited number of singleon

instances. This variant can be better differentiated by solar system (single star system) and

Sirius system (binary star system) [6].

 1.10 UML Diagram and source code of Limiton an extention of singelton

User
Highlight

1.11. Social Singleton [14]

In this variant the idea of social network is used to implement singleton classes . The benefit of

using social singleton is that static resources are shared among singleton objects that have a

relationship (friends) with each other. One object can have access to a resource owned by any

other only if it is an authorized friend object. It can be better related with a scenario when there

are similar resources scatered across different locations and can be served a centerlized source

of access. Examples include an integrated enviornment with multiple processes/ machines to

execute a job [14]; if an object’s own request fails to entertain the exclusive access, the request

is forwarded to the fellow object to gurentee the access of its resource inorder to process a job.

Transparency of the objects is clearly seen because the client object doesn’t know which object

resource is shared.

User
Highlight

1.11 UML Diagram and source code of social singleton object

1.12. Generic Singleton using Reflection [15]

Reflection technique is one of the powerful features provided by any modern programming

languages. With the extensible support of using code that is not available at runtime which

includes information that is in the metadata of .Net Assemblies i.e. types, constructors, private

methods etc. as described by [4]. Using .Net generics the common design patterns are

generalized in such a way that it can be used within any type. .Net generic implementation of

singleton is a nice attempt to use any type as a singleton. Though there is no change in structure

but it provides an easy way to make classes as singleton without writing additional code .

-Singleton()
+getInstance()

-_instance

Singleton

Type

1.12 UML and Source Code of Generic Singleton Class

User
Highlight

