Memento Design Pattern [Gamma et al]

Memento design pattern is used to save history of objects and provides the mechanism to rollback or
retrieve from the saved states based on triggered events. The best example to demonstrate the
memento design pattern is undo operations in any word processing application. It holds some
advantages and disadvantages e.g. it provides easy to implement and recover capability when retrieving
complex objects is considered time consuming.

Following are the variants of Memento design pattern:

HybridPrM [65]

In this variant, two Prototypes and a Memento share their role by means of sub-class interaction to
generate a HybridPrM. One of the classes of memento is a subclass of prototype pattern. This
generalization is applied to a file system case study. The master file is to be cloned based on a state
event which is solved by the HybridPrM. Following is the UML Diagram of sharing hierarchy of the
HybridPrM pattern:

clicnt prototype Prototype

clone()

%\;\ Melone based on state

1 1
1
1 T 1
- I . . | m !
Concrete Protypel H Secure ]-'q—cyl.nt}'rlm ————— = Prototype Memento : :
\ 1
. e ——— T N
clome(y g | = JI clone(} ]
! T~ 1 SetMemento(m) GetState() : H
1
L 1 !
1 ~reateMerme !
: ! : Createbleme mtm['l] SetState() : H
! : [} Lol 1 ! :
H : : state .
retum copy of itself \:.’L ___________ {‘ _______________________ ! :

stale = ChetStatel) H return new Memomentod)

Prototype combines with Memente

Figure 1.20 UML Diagram of HybridPrM variant



