Template Method Design Pattern [Gamma et al]

This pattern is a preset format used as starting point in order to avoid recreation each time when
required. This preset format is basically the algorithm. Applications provide an opportunity within its
domain for a certain algorithm to perform a task with minimum requirements, therefore some
additional steps can be added later to provide an extensible solution. This pattern defines a program
skeleton of an algorithm in a method called template method and facilities the subclasses to add
additional steps to redefine the algorithm if needed in future. Following are the variants of template
method design pattern:

Template Method — Factory Method Compound Pattern [72]

The template method-factory method compound pattern consists of a combination of one instance of
Template method pattern and one instance of Factory method pattern. The idea of this variant is to
separate fixed and variable parts of a method: the fixed parts are implemented in the superclass as
template methods while the variable parts are implemented in subclasses as primitive operations.
However, the template pattern does not place any restrictions on the functionality of its primitive
operations. Following is the UML diagram of the compound implementation:

Abstract Class " FACTORY METHOD : Creaior
TEMFPLATE METHOD : AbstractClass

Product Do)
Create()
Operation) Q- --— - ——--

product = Create()

/N X »

ConcreteProduct = Concrete Class 4 FACTORY METHOD : ConcreteCreator
Dog TEMPLATE METHOD : ConcreteClass

Create() (3---————4-—————-

return new Cou;:]eterd.l-:tH

Figure 1.27 UML Diagram of Template Pattern variant

Enhanced Template Design Pattern [73]

The purpose of this variant is to develop a design, based on the Template Method design pattern, for
testing object equality that simultaneously maximizes code reuse, encapsulation, data hiding, and
minimizes semantic errors. We begin by considering a typical, but flawed, beginner’s implementation of
object equality. Following is the UML diagram:

T

+ equals(Object that) : boolean
localEquals(Object that) : boolean
getTypeEquiv() : Class

A

A

- X it

localEquals(Object that) : boolean
getTypeEquv() : Class

B

B

-y o mt

localEquals(Object that) : boolean
getTypeEquv() : Class

Figure 1.28 Template Pattern variant

