Observer Design Pattern [Gamma et al]

Observer pattern allows us to implement publisher/subscriber scenario where any change to publisher
automatically notify its subscribers. There are many different ways to implement observer pattern, such
as using delegates and events or the Template Classes, the concepts are all the same. That is, the
observers are registered to listen to the changes in the subject and are notified when the subject
changes. It is also termed as “Distributor/Listener pattern”. Following are the variants of Observer
design pattern:

Multiple Instance Observer [65]

A formal and unified architecture of software patterns has been introduced Real Time Process Algebra
notations. Case studies on the Abstract Factory and Observer patterns have been chosen to illustrate
the expressive power of Real Time Process Algebra in specifying design patterns. The formal approach
has shown that architectures, static and dynamic behaviors of software patterns can be rigorously
described by RTPA. Relationships between the formal and informal models of design patterns have been
comparatively analyzed.

Subject
- observers : List
0.* Cbserver
+ setSlate(state : Object) : void (> =
+ attach{obserer : Observer) : void + update(info ; Qbjsct) : void
+ detach{observer ;. Obsener) : void L}E
+ notify(info : Object) : void i
ConcreteSubject ConcreteObserer

- state : Object

+ update(inio ; Object) : void
+ satState(newState : Object) : woid

Figure 1.21 Variant of Observer

Compound Implementation [66]

In this variant observer is embedded into responsibility chain to form a composite pattern. It is not only
to enhance the ability that responsibility chain pattern deals with user's request, but also because of
each handler's observer being non-coupling with other handlers enables the responsibility chain to have
a better flexibility, and each handler can dynamically add, delete their own observer. Following is the
UML Diagram:

User
Highlight

F ==interface=>=

s=intarface==
Handler Dbserver
handleFequsts jroid 1= Hmdledthoolean) hoolean
set Mest Hyndlen| Handler) roid hardleRequet| jaroid
add Obeermeri Obsermer jroid
notify Obeermer) jroid -&
1';\ :
ConcrateHandler Concrete Ohserver
obgerrerList: ArrayList
handleRequst) jroid
set et Hamdlen Hardler jro1d isHmdledthoolean) hooleamr
add Obserrer] Obsermer jroid handleRequsts Jroid
twotity Obsermer jaroid

Figure 1.22 UML Diagram of composite implementation

