
10 Proxy Pattern [Gamma et al]

Proxy pattern is used in scenarios when it is required to use avoid heavy-weight objects. So light-

weight objects that are actually replica of the original objects exposing the same interface but with

minimum functionality are created. Proxies support client server communication in numerous

contexts such as a distributed environment. Since proxy pattern resemble with Decorator pattern in

structure but yet not with intent. [38] Quoted an example of the proxy pattern using client server

communication. Following are the variants of proxy pattern.

10.1 Proxy associated with Subject [38]

This variant is structurally close to Decorator pattern with a basic difference is decorator role is

abstract whereas proxy role is concrete. Proxy initializes its association to Subject role with a

reference to an object of RealSubject which is instantiated inside the constructor of Proxy.

+request()

Subject

+request()

Proxy

+request()

RealSubject

10.1 UML Diagram of proxy associated with subject class [37].

10.2 Aggregation relation of Proxy and Subject [3]

In this variant Proxy holds an aggregate relation of the Real Subject class. This implementation uses

idea of parameterized instantiation of the RealSubjet Class. There could be different remote objects

that channelize the creation of certain specific type object which is evaluated based on certain

condition. The RealSubject is initialized at either the constructor level or at method level.

+request()

Subject

+request()

Proxy

+request()

RealSubject

1 1

User
Highlight

User
Highlight

10.2 UML Diagram of proxy associated with subject class [37].

 10.3 Proxy in heterogeneous environment [39]

A proxy object appears in this variation is to delegate the method call to the Real Subject which

resides in the database based on the authentication (Proxy Thread).

+remExe()

Agency

+remExe()

Proxy

+remExe()

AgencyServant

+notify()

Xnotified

+run()
+newSession()

ProxyThread

10.3 UML Diagram of proxy in heterogeneous environment [39].

 10.4 Pipe and filter implementation [40]

This variant uses proxy pattern with combination an architectural style called pipe and filter. A

number of transformations are applied on the data to reach from source to destination via

pipes. In this variant the Proxy and RealSubject Classes are subclassed to extend the types of

objects that call original subject belonging to a different domain. [41] implemented a chat

application, there could be other examples as well like to channelize the input data to multiple

distributed sources.

User
Highlight

10.4 UML Diagram of pipe and filter style proxy [40].

 10.5 Reverse Proxy [41]

A proxy object is surrogate for client objects whereas reverse proxy object serves as placeholder

for servers. This variant redirects a request and forwards its response to the client. There are

number of replicated servers which act as listeners for the request to maintain transparency. A

reverse proxy object inquires for any availability and delegate the request to a replica if a

certain server does not respond in time.

Subject

Proxy

RealSubject1 RealSubject2 RealSubject3

Client requests response

10.5 UML Diagram of proxy associated with subject class [41].

User
Highlight

10.6 Generic Proxy Implementation using reflective architecture [42]

This variant is a generic implementation to incorporate the functionalities of different kinds of

proxies like virtual, remote, protection, synchronization, counting, and firewall proxy. Local and

remote proxies are defined as ProxyForX and ProxyForY which represent X and Y objects .

«metaclass»
Redispatched

«metaclass»
ProxyFor

«metaclass»
Class

«instance»

«instance»

Object

«instance»

ProxyForObject

ProxyForRemoteObject

ProxyForX

ProxyForY

X

Y

«instance»

«instance»

«instance»

10.6 UML Diagram of proxy associated with subject class [42].

 10.7 Dynamic Proxies [43]

In Existing work, proxies were limited to regular objects only. But today proxy can be a target

class or a method. In all canonical representations there were no clear divisions between

interception of message and handling [44]. Due to certain limitations the community advocates

the use of Dynamic Proxies which are termed as Meta objects [45] that contain the Meta

representation of other objects at base level. Meta objects are like normal objects [45] and they

expose certain interfaces which are used in Meta Object Protocols [47] . [44] Describes an

implementation of Ghost Model which supports proxies for regular obj ects as well as classes,

methods. Meta objects are discussed in detail by [46].

User
Highlight

10.7 Diagram of basic architecture separating base and Meta level code [47] and

UML Diagram of dynamic proxies [43]

10.8 Client Proxy [48]

This variant of proxy pattern deals with objects that lies on a distribute network. Such an object

which is instantiated and maintained remotely can be accessed via distributed object

frameworks. Programming across networks is not always an easy task. Remote invocation of

objects involves bunch of error conditions like network latency, unavailability, unnecessary

delays, failures, crashes due to which it is not optimistic to think for a winwin situation. Target

object is accessed through the use of invokers which are a part of server application and

invokers dispatches the request through which clients feel transparency of a remote invocation

call as local invocation call. The invokers are provided with remoting information i.e. operation

name.

User
Highlight

10.8 Diagram of client proxy [48]

